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The microscopic transition rate is briefly calculated from quantum principles to 
derive the microscopic master equation. By introducing ~'p, the phenomeno- 
logical time, and coarse graining Wp, the transition rate, a Complete normalized 
phenomenological transition rate is obtained. The Langer form is then approxi- 
mately obtained. 
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1. INTRODUCTION 

The phenomenological (mesoscopic) master equation proposed by 
Langer ~0 is based on the assumption that the transition probability is 
determined by the change of a free energy of the system caused by the 
transition and a Gaussian factor of the state variables. The latter has the 
effect of reducing the probability for large changes in the variables. The 
equation has been successfully used to discuss the decay of the metastable 
states and spinodal decomposition. ~1,2) It is conjectured that the theory 
should apply to any system whenever the free energy mentioned above can 
be meaningfully defined. 

Metiu et  a/. ~3) presented microscopic arguments for the establishment 
of the phenomenological master equation. Using Zwanzig's projection 
methods, they derived a microscopic master equation for the mean field 
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spin system. Then, they made an additional assumption that a Markoffian 
master equation exists on a phenomenological time scale, and obtained, by 
a further averaging, a phenomenological transition rate of Langer's form by 
means of the path integral method. They concluded that on the phenome- 
nological time scale the stochastic time dependence of the system is 
determined by its coarse-grained "thermodynamic" properties. One then 
can ignore the detailed dynamics of the system and heat bath. 

A considerable literature exists on the realm of validity of the Pauli 
equation (4) for open systems and on the manner in which the transition 

�9 probabilities might be derived from quantum principles. (5) We here, using 
these results, briefly calculate the microscopic transition probabilities and 
obtain the microscopic master equation. In Section 3 we derive complete 
normalized phenomenological transition probabilities. In Section 4 we draw 
an analogy between spin flips and random walks, and discuss Langer's 
form as an approximation of the complete phenomenological transition 
rate. 

2. THE MICROSCOPIC MASTER EQUATION 

We consider here the mean field Ising spin system (6) coupled to a 
phonon heat bath (3) in an external magnetic field. The Hamiltonian of the 
spin-phonon system is 

n =/-/s + t/~ + V (1) 

where H S, H B, and V are the Hamiltonian for spins, for phonons, and for 
the interaction between spins and phonon "heat bath," respectively. In 
terms of the creation and annihilation operators for up-spin at site i01i + , ~i) 
and those for phonon of the mode a with frequency ~. (O + , O~), we have 

H , - -  - 

H~ = ~h~2.0+O., (2b) 

N 

v =  + + + + O o ) g . ,  (2c) 
i = l  a 

where J is the coupling constant for spin flips, g~ is that for spin-phonon 
interaction, N the number of spins,/~B the Bohr magnetic constant, and H 
the external magnetic field. 

The transition probabilities of spin flips induced by interaction, V, per 
unit time can be calculated with (s) 

W= ~ I(flVli)12~(E?- Ei ~ (3) 
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where 1i) and If), Ef and Ef ~ are the initial and final states and their 
energies. 

Denote by N+ the eigenvalue of ~/ ,+~i ,  N = N -  N+,  and M 
i 

= N +  - N _ .  From Eqs. (2a) and (2b) we obtain the energy difference for 
the elementary process N+ ~ N+ - 1 

J J -  h[r (M) a~] (4) E f  - E~~ = -~ M + ~BH - ha~ _ - 
2N 

for example. 
Assuming the phonon heat bath is in the equilibrium state, (5) we 

o b t a i n  

W(N + --> N + - 1 ) -  27rN---------Z+ f da g2o(ao)[noS(w_ - a o )  
h 2 

2~rN+ g~p(Io~_ [) exp( /3hr 
- h ~ sinh(B-~_- [-/2) 2 ) (5) 

where ~. is the number of phonons in mode a. Similarly, we have 

29rN_ g2p('~ + ') e x p ( f i h w + )  
W(N+--->N+ + 1 ) -  h 2 sinh(Bhl~o+i/2 ) 2 (6) 

where 

J M -  txBH J h~+ = N 2N (7) 

By introducing the "microscopic" free energy for the spin system 

J M 2 fl-1 N! F ( N + ) = ~  + ~ B H M -  N + ! N  ! 

to order 1/N,  Eqs. (5) and (6) can be written as 

W(N+ ~ N+ +_ 1) = h2sinh (flhr exp 
% 

where 

hr = J M + / ~ B H  

(8) 

(9) 
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By means of W(N§ N+ +_ 1) we can then write the master equa- 
tion (s) as 

~t P(N + ,t) 

= W ( N +  + 1 ---) N +  ) P ( N +  + 1, t) + W ( N +  - 1 ~ N+ ) P ( N +  - I, t) 

--IW(N+--)N+ + 1 ) +  W(N+--)N+ - 1) IP(N + ,t) (10) 

This is the same result as obtained by Metiu et al. (3) 

3. THE PHENOMENOLOGICAL TRANSITION PROBABILITIES 

Equation (10) may be rewritten as 

OP(t) _ ~P( t )  (11) 
~t 

A 

The nonvanishing elements of Matrix % are 

%N+,N++I = W(N+ + I - - )N+)  
(12) 

%N+,N+=-IW(N+ ---)N+ + 1 ) +  W(N+ ---)N+ - 1)] 

For a given initial condition P(0) the solution to Eq. (11) can be 
written in the following form: 

~(t) .  P(O) 

The phenomenological transition rate I,V e is defined by 

P(~'e) = I~PP(O) 

Thus, 

Pn(re) = ~a Wp(m---> n)Pm(O ) ~ ~a WnPmem(O) 
m m 

where r e is the phenomenological time scale. Therefore, 

(13) 

(14) 

(15) 
The phenomenological coarse time scale ~-p introduced by Metiu et 

a/. (3) is larger than the microscopic time scale %~, which can properly be 
defined as the average time for one spin flip, 

.%=[W(N+-->N+ +I)+ W(N+--->N+-I)] -l (16) 

If rp is still sufficiently small so that the change of magnetization on that 
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time scale is small, then we may adopt the approximation (3) 

W(N+ ---~N+ +- 1) = ~exp(-T-/~) (17) 

where ~ is the mean value of 

2~r (U+ N_ )1/2p(~) 

a ( N + )  = h2sinh(Bhw/2) 

in time interval ~'p, and /?  the mean of ~AF/2 .  We shall use Eq. (17) to 
calculate W e. From Eqs. (13) and (15) W e is then a sum of terms whose 
general form is 

fo 'edt l fo t 'd t2 ' ' ' fo%-l(~)  ~e- (r ' ) ' /e  (~5)~ (18) 

Collecting all the terms contributing to (n + vlffz~'ln ) of the transition 
matrix W e , we have 

- -  P0 

W e ( n - - ~ n + v ) = 2 2 '  (~T,)" vp! ( - 2 c o s h f l )  e -"~ (19) 
~e ~o re! v+!p_!Vot 

where the prime in ~'~0 means the restriction 

v +  + v + Vo = vp (20) 
p +  - - p  ~--- p 

Changing the order of the two summations in Eq. (19), we obtain 

( a're ) e - ~ We(n---~n + v)=  ~ (-2~-pcosh/~)~0 ~ , -  ,2~_+, 

~0=0 Vo! ~_=0 (v_ +v) tv_ t  

= e -2%c~ BI,(2~re)e-"8 (21) 

where we have used Eq. (20) and the series for modified Bessel functions 
L(x)(7) 

o o  

I . (x)  = ~ s!(s 1 x (22) 

4. RELATION OF SPIN FLIPS TO RANDOM WALKS 

The model is closely related to one-dimensional random walk with 
continuous time. (8'9) The master equation for one-dimensional random 



380 

walk is 

Zheng and Schieve 

0e(t,s) 
Ot - k e ( t , s  - 1) - (k + k ' ) e ( t , s )  + k ' P ( t , s  + 1) (23) 

where k is the probability of the transition from site (S - 1) to S per unit 
time, and k' that from (S + 1) to S. To find the principal solution to Eq. 
(23), we consider the initial condition of the walker at point m, i.e., 

P(O,s) ~-- ~s,m (24) 

From Eqs. (23) and (24) the equation for the generating function 
G(t,z)  = ~ =  _~z~P(t , s )  is 

aG (k + z ) +  (25) 
Ot 

G(t,  1) = 1, a(O,z)  = z m 

so that 

G ( t , z ) = z m e x p ( [ k z - ( k ' + k ) + k ' z - l ] t }  (26) 

Noting the generating function for modified Bessel function (v) is 

eO/2)'(z+z-b = ~ I,(.c)z s (27) 

we have then from Eq. (26) 

](1/2)(s-m)I s m[2t(kk ') l /21e-(k+k') t  (28) P(t,s) = ( k' t 

Equation (21) is of the same form as Eq. (28) if we take 

k---~ ~e -B 

k' ~ ~e 9 

and 

t->~ 
To discuss a random walk with continuous time in detail, we need to 

know both the probability +(t) for one step in time interval t and the 
transition probability matrix M for state transition in one step. (1~ If we 
denote by P(v  e, s) the probability for the walker to be at site s after pp steps, 
then we have in the matrix notation 

e(vp + 1) = Me(vp) (29) 

Therefore, for a given initial state P(0) the probability for the walker to be 
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at some site at time t is 

So l P(t)  = E [ + ( t ) ,  ] 1 -  td'rqJ('r) P(n) 
n=O 

= ~0 E ~ ,  l~Em - ;?~*(r~ l ~ ( ~  
where * indicates convolution operator. The Laplace transform is [ ]-' 

X ~ ( X ) . ,  l) -P(O) I~(X)= X l---~--~i ( m -  

where 

(30) 

(31) 

and then 

and 

I 1 ( ~ t -  1)t iP(0) (36) P(t)  = exp ~.-~ 

Comparing Eq. (36)with Eq. (11), one sees that Eq. (11) is equivalent 
to a random walk with M = (% + 1)~ 1 and ~(t) of Poisson form. 

For a random walk with discrete time we have 

lp( t )  ~- ~ ( t -  Yl) 

,~(X) = e -a~' 

X~(X) _ Xe-a~' a~"<<l 1 )  - -  (37) 
1 - ~ ( X )  1 - e - x ' '  z~ 

Hence, for large t >> ~-1 we have the same result as Eq. (36). We can take 

Thus, 

~(X) = fore-atop(t) dt (32) 

For a Poisson process (1~ we have 

~(t)  = z l- le-  ' / ' '  (33) 

then 

~(X) = 0"iX + 1) -1 (34) 

Equations (31) and (34) yield 

[ l-' 0(x) = x -  L ( ~ -  l) v(o) (35) 
'T 1 



382 Zheng and Schieve 

~'] = ~'m here. The transition probability for change n ~ n + p in pp steps for 
a random walk with discrete time is 

with 

W(n--->n + p)= [(1/2)(~? + p)]! [(1/2)(~? - ~,)]! 

X - - - -  - -  

2 cosh/3  2 cosh 

1 
(2%) 1: 

(38) 

(39) 

~'P - 2 ~ ? c o s h / 3  (40) ~e--~m 
where we have used 

N e x p ( -  m2 1 (41) 
(2~rN)l/2 ~ / 

Expression (38) is normalized, but (39) is not. To normalize it, we rewrite 
(39) as 

E ;] 1 1 (v+  

_ 1 e x p ( -  ~p p2 (2~r~P) '/2 _ ~- /32)exp( -- ~-~e )exp(--  v/~ ) (42) 

Expression (42) is of Langer's form (1)" 

--~n + p)cc exp exp - z [F(n + t)) - F ( n ) ] )  (43) W(n 

as is (4.18) in Ref. 3, but differs from theirs by a normalization factor. 
Let us now find the condition under which expression (42) is true. The 

generating functions for distributions (21), (38), and (42) are 

GM('ce ,z) = exp[ (~e-flz -- 2~ cosh/~ + ~e~z-1)'c?] (44a) 

[ l" Ga('r e ,z) = - - z + e - f l  - - z e  B -1 (44b) 
2 cosh/3 2 cosh/3 

Go(,r? ,z) = exp[ ~- (/~ - lnz)2 - 7,82 ] (44c) 
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where subscripts M, B, and G indicate modified Bessel function, binomial, 
and Gaussian, respectively. In terms of Eq. (40), Eq. (44b) can be written as 

[ l+(~te-gz_2~cosh~+~egz-1) , rp .  1 12~*pc~ ~ 
2~zpcosh/3 

then for large 2~'rpcosh/3 hence large cp' (44b) approaches (44a). 
In order to compare (42) with (21) we may calculate the moments for 

both. It is easy to verify that for Eq. (42) 

(v)~ = - 2~/3r (45a) 

( ( / )2> _ ( p > 2 ) G  = 2~-/,cosh fl (45b) 

By differentiating the generating function (44a) we have for the distribution 
(21) 

<P)M = -- 2~r (46a) 

( ( p 2 ~  __ (/~>2)M = 2~r 1~ (46b) i 

While (45b) coincides with (46b), (45a) approaches (46a) only when fl is 
very small. Under this condition we have from (44a) 

GM('r e ,z) ~exp[  ] (z - 2 + z -  l) / (47) 

On the other hand, from (44c) we have for large v e and small/3 

oo .. 

[ ~P ( z - 2 +  z - l ) ]  (48) ~ exp ~- 

because for 0 < z < 1 z(lnz)2~(z - 1) 2, the leading term is the same as 
that of G M. If we ignore the common factor e - d  in (21) and (42), the 
nonvanishing higher moments for the Gaussian factor are 

m26n = (2n - l)m26n_2 �9 m26 (49) 

with 
- 

m2 G = 2~r f l ~  2a,rp 

and those for the distribution I~(2~rp) 

m 2 n  = C 2 n _ l m 2 n _ 2  + C 2 n _ l m 2 n _  4 + . �9 . + ~...2n_lrrt2 J ( 5 0 )  
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with 
~ 

= 

The leading terms are the same for both. 

5. DISCUSSION 

1. As one can see from the derivation in Section 3, it is not necessary 
to make an additional assumption that a Markoffian master equation exists 
on the phenomenological time scale. Metiu el al.'s result [(4.18) in Ref. 3] is 
an approximation of the result (21). 

2. By calculating the first and second moments for a given transition 
probability, one can derive the Fokker-Planck equation. (ll) From Eqs. 
(45a) and (45b) we have to order 

OP _ O [(2~firpcosh f i )p]  + 1 3__2__2 [(2~recosh f i )p]  
O[ On "2 On 2 

o r  

a i  e + 

If we start from Eq. (9), we have similarly 

- - -  2a cosh P (52) 
3t 3n T P + 2  On 2 

For small flAF/2, Eq. (52) can be written as 

3t On T ~ l  J + - 0 n  2 acosh P (53) 

One can recognize that Eq. (51) is just the coarse-grained form of Eq. (53). 
Langer's form of the transition rate is not normalized, and leads to a 

diffusion constant in the F.P. equation equal to 1. The factor ~r e cosh/3, 
which appears in both terms in the RHS of Eq. (51), contains the details of 
the heat bath and the coupling between spins and the heat bath. Only when 
~rp cosh fi is slowly varying in the coarse-grained variable ~, can it then be 
moved out the differentiation and regarded as a time scaling factor. Then, 
Eq. (51) reduces to 

O~" OF O~ 2 

If this factor varies rapidly in ~, the effective potential would be 

1 ln(~-p cosh fl ) 
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instead of ft. Phase transition would occur, for instance, even when ff does 
not have a double-well structure at a temperature above the Curie point. In 
addition, even new critical points might occur.(12) 
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